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Sickle cell disease (SCD) afflicts millions of people worldwide and is associated
with considerable morbidity and mortality. Chronic and acute vaso-occlusion
are the clinical hallmarks of SCD and can result in pain crisis, widespread organ

damage, and early movtality. Even though the molecular underpinnings of SCD
were identified more than 60 years ago, there are no molecular or biophysical
markers of disease severity that are feasibly measured in the clinic. Abnormal
cellular adhesion to vascular endothelium is at the root of vaso-occlusion. Howev-

er, cellular adhesion is not currently evaluated clinically. Here, we present a clin-
ically applicable microfluidic device (SCD biochip) that allows serial quantitative
evaluation of red blood cell (RBC) adhesion to endothelium-associated protein-

immobilized microchannels, in a closed and preprocessing-free system. With the
SCD biochip, we have analyzed blood samples from more than 100 subjects and
have shown associations between the measured RBC adhesion to endothelium-

associated proteins (fibronectin and laminin) and individual RBC characteristics,
including hemoglobin content, fetal hemoglobin concentration, plasma lactate
dehydrogenase level, and reticulocyte count. The SCD biochip is a functional

adhesion assay, reflecting quantitative evaluation of RBC adhesion, which could
be used at baseline, during crises, relative to various long-term complications,
and before and after therapeutic interventions. (Translational Research
2016;173:74–91)

Abbreviations: CBC ¼ complete blood count; EDTA ¼ ethylenediaminetetraacetic acid; FCSB

¼ flow cytometry staining buffer; FN ¼ fibronectin; GMBS ¼ N-g-Maleimidobutyryloxy succini-
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mide ester; Hb ¼ hemoglobin; LDH ¼ lactate dehydrogenase; LN ¼ laminin; RBC ¼ red blood

cell; SCD ¼ sickle cell disease

INTRODUCTION

In mammals, the red blood cell (RBC) has uniquely

evolved to lose its nucleus and organelles to become

remarkably flexible.1 RBC’s adherence to vascular

wall and other cells is insignificant,2 whereas most

other cell types depend on adhesive interactions to

survive.3 RBC repeatedly deforms and squeezes

through narrow capillaries that can be as small as half

of its diameter.2,4,5 Its characteristic shape and

exceptional mechanical deformability are determined

by its membrane skeleton, which is located underneath

the cell membrane and linked to adhesion receptors on

the cell surface.6-9 RBC’s reduced deformability

and increased adhesion have been associated

with microcirculatory impairment in many diseases,

including hemoglobin disorders,10-14 sepsis,15,16

malaria,17-20 lupus,21,22 heavy metal exposure,23,24

blood transfusion complications,25,26 diabetes,27,28

cancer,29,30 kidney diseases,31-35 cardiovascular

diseases,36,37 obesity,38,39 and neurologic disorders.40-43

These diseases affect hundreds of millions of people

globally with a socioeconomic burden of hundreds of

billions of dollars annually.44-51

In sickle cell disease (SCD), RBC adhesion has been

associated with blood flow blockage,52,53 disease

severity,10-13 and organ damage.54 SCD arises from a

point mutation in the b-globin gene resulting in produc-

tion of hemoglobin S (HbS). Intracellular HbS molecules

polymerize on deoxygenation, forming long fibers that

lead to membrane damage and abnormal cellular stiff-

ness. Membrane damage caused by HbS polymerization

increases sickle RBC adhesion to vascular endothe-

lium.55,56 In addition, increased RBC stiffness impacts

blood flow and, with abnormal cellular adhesion,

results in blockage of blood vessels (vaso-occlusion).52,53

SCD affects millions worldwide57 and imposes sig-

nificant physical, emotional, and financial burdens on

its sufferers, their families and communities. Chronic

and acute vaso-occlusion are the clinical hallmarks of

SCD and can result in painful crises, cumulative organ

damage, and early mortality.56 SCD can cost .$8

million per patient over a 50-year life span (in the

United States).58 Even though abnormal RBC adhesion

is the centerpiece of vaso-occlusion and vascular dam-

age in SCD, there is no clinically relevant tool or

method to evaluate cellular adhesion as a clinical

biomarker for disease severity. Lack of such clinically

applicable assays has slowed the development of new

pharmaceutical and therapeutic approaches because

there is no in vitro test for measuring the effects of these

interventions on RBC adhesion. To address this clini-

cally unmet need, we developed a versatile microfluidic

platform for evaluation of RBC adhesion in whole blood

samples. SCD may be an ideal disease with which to

interrogate cellular adhesion as an indicator of disease

activity and severity because point-of-care and real-

time markers of disease activity are urgently needed.

In the 1980s, abnormal RBC adhesion in SCD was

studied using flow chambers or ex vivo rat mesoce-

cum.52,59-61 However, cellular adhesion is not

currently evaluated clinically because analyses of

these cellular interactions are technically challenging

and difficult to reproduce. Recently, microfluidic

technologies have emerged as versatile platforms for

diagnosing and monitoring diseases.62-64 These

devices allow simple and cost-efficient fabrication,

short processing times, and minimal reagent use.

Furthermore, microfluidic systems can be easily
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Background

Abnormal cellular adhesion to endothelium is at

the root of vaso-occlusion in sickle cell disease

(SCD). However, cellular adhesion is not currently

evaluated clinically because these analyses are

technically challenging and difficult to reproduce.

This has limited the widespread applicability of

adhesion assays clinically or as a research tool in

SCD.

Translational Significance

We developed a microfluidic system that allows

serial quantitative evaluation of red blood cell

adhesion to endothelium proteins in a closed and

preprocessing-free system. The presented in vitro

adhesion assay would enable a comprehensive

and integrated evaluation of red blood cell adhe-

sive properties, which could be used at baseline,

during crises, and with therapeutic interventions

in SCD.
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adapted to mimic biophysical microenvironment of

cells for a more comprehensive and accurate analysis

of the subject’s pathophysiological state.65-68

Microfluidic platforms have been used in diagnosis

and/or monitoring of several life-threatening diseases

such as cancer,67,69,70 human immunodeficiency

virus,71,72 and thrombosis.73,74

Here, we present a clinically relevant microfluidic de-

vice (SCD biochip) that allows serial quantitative mea-

surements of RBC adhesion to endothelium-associated

protein-immobilized microchannels (fibronectin [FN]

or laminin [LN]) in a closed and preprocessing-free sys-

tem. RBC deformability, when adhered, can also be

evaluated using this technology. FN is a glycoprotein

that circulates in plasma and is present in the endothelial

cell membrane.75,76 FN plays a role in SCD RBC

adhesion, via RBC integrin a4b1 (also known as very

late antigen-4 or VLA-4 integrin) interaction75,77,78

with the endothelial wall.75,77,78 LN is subendothelial

and binds to an important RBC surface protein from

the immunoglobulin superfamily, BCAM/LU (basal

cell adhesion molecule, Lutheran antigen),59,79-82

which is phosphorylated during beta-adrenergic stimu-

lation.59,80-82 We have analyzed more than 100 subject

blood samples using the SCD biochip, showing signifi-

cant associations between RBC adhesion on FN and LN

with hemoglobin (Hb) phenotype (HbSS, HbSC, and

HbAA), fetal hemoglobin (HbF) levels; lactate dehy-

drogenase (LDH); platelet and reticulocyte counts.

The SCD biochip allowed us to analyze RBC adhesion

in a sizable, adult, well-phenotyped, SCD population.

METHODS

Study design. All attainment of samples and clinical

information, such as laboratory tests, treatment courses,

and medical history, was performed with informed con-

sent of the subjects and under the institutional review

board approval. It is standard of care for patients to

get complete blood counts (CBCs) during routine (base-

line) clinic visits. Blood samples from patients with

HbSS, HbSC, HbSC/Sb1, and healthy controls (Hb

AA) were de-identified and collected during the

regular course of the Adult Sickle Cell Clinic at the

University Hospitals Case Medical Center in

Cleveland. Surplus blood samples, drawn in an

ethylenediaminetetraacetic acid (EDTA)–containing

Vacutainer (‘‘purple top’’) tube, were obtained. A

volume of 0.25-mL whole blood is used in the SCD

biochip. All samples were run within 24 hours of

acquisition. Collected data included Hb phenotype,

CBC (including white blood cell [WBC, 109/L], red

blood cell [1012/L], absolute neutrophil count [106/L],

platelet count [109/L], and reticulocyte count [109/L]),

plasma LDH (U/L), and pain level (by FACES or

numeric pain rating scale, between 0 [no pain] and 10

[worst possible pain]). Sample attainment relative to

any treatments, such as hydroxyurea use or blood

transfusions, was noted. Hb identification of Hb S, Hb

F, Hb A, and Hb A2 was conducted via high-

performance liquid chromatography (HPLC) at the

Core Laboratory of University Hospitals Case Medical

Center, using the Bio-Rad Variant II Instrument (Bio-

Rad, Montreal, QC, Canada). Clinical laboratory

values for subjects’ blood samples are listed in

Table I. Adults who were documented with SCD,

including HbSS or compound heterozygous HbSC- or

HbSb-thalassemia diagnosis as evidenced by one or

more clinical features, were assessed for eligibility

(Fig S1). Written informed consent was obtained from

the subjects who were able to comply with the

requirements of the study. Presence of a condition or

abnormality that, in the opinion of the investigator,

would compromise the safety of the patient or

researcher performing the experiment (such as

infection) was regarded as an exclusion criterion.

Control samples (HbAA) were obtained from

Research Blood Components (Boston, MA) or from

healthy volunteers. We recorded pain scores of

patients in our study but did not rigorously assess

temporal proximity to painful crises. Furthermore, any

acutely ill patient was sent from our clinic to the day

hospital for treatment, and those samples were not

available for processing. We estimate that 5%–10% of

patient visits were handled in this way. A subset of

early samples was obtained anonymously without

correlative clinical data beyond hemoglobin phenotype.

Table I. Clinical phenotype of the consented SCD

patient population

Mean 6 SE Range

Age 37.6 6 2.5 19–72

WBC (109/L) 9.7 6 0.6 4.1–22.6

Reticulocyte count (109/L) 324.1 6 29.0 89–798

Hemoglobin (g/dL) 8.8 6 0.3 5.5–12

Platelet count (109/L) 361.1 6 22.7 155–703

Absolute neutrophil

count (106/L)

4899.1 6 459.7 720–14,240

Lactate dehydrogenase (U/L) 408.3 6 32.7 157–934

Pain* 3.4 6 0.5 0–10

Hemoglobin F (%) 9.8 6 1.3 0.4–23.9

Hemoglobin S (%) 72.3 6 3.2 17.6–91.1

Hemoglobin A (%) 10.9 6 3.2 0–66.1

Abbreviations: SE, Standard error; WBC, white blood cell.

Data presented is based on 32 blood samples (n) from 27

consented SCD patients (male 5 11, female 5 16).

*‘‘n’’ for pain score was 31.
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SCD biochip device fabrication. SCD biochip is de-

signed and developed to mimic the physiological condi-

tions of the microvasculature. The microfluidic devices

are designed and fabricated to be single use to prevent

cross-contamination between samples. Microfluidic

channels are composed of a glass surface

functionalized with FN or LN, a poly(methyl

methacrylate) plastic top (encompassing inlets and

outlets), and sandwiched 50-mm-thick double-sided

adhesive tape that defined the height and shape of the

microchannels (Fig S2). RBC adhesion to FN or LN

was measured in SCD biochip, without preprocessing,

at or above physiological flow shear stresses of

postcapillary venules (1–5 dyne/cm2),53,83-85 ranging

from 1 to 50 dyne/cm2. Briefly, SCD biochip was

fabricated by assembling poly(methyl methacrylate)

top parts, cut by VersaLaser system (Universal Laser

Systems Inc., Scottsdale, Ariz), and double-sided

adhesive film (iTapestore, Scotch Plains, NJ) which

have an inlet and outlet (0.61 mm in diameter and

26 mm apart).68 They were placed onto Gold Seal

glass slide (adhesion coating: APTES, 3-Aminopropyl

Triethoxysilane, Electron Microscopy Sciences

[Hatfield, Pa]). Surface chemistry inside

microchannels was achieved by flushing the channels

with N-g-Maleimidobutyryloxy succinimide ester

(0.28% vol/vol) followed by incubation in FN

(fibronectin from human plasma, 1:10; Sigma Aldrich,

St Louis, Mo) or LN (laminin from Engelbreth-Holm-

Swarm murine sarcoma basement membrane, LN 1,

1:10; Sigma Aldrich) for 1.5 hours at room

temperature. Then, channels were incubated in bovine

serum albumin solution (20 mg/mL) overnight at 4�C

for blocking nonspecific binding events. After

assembly of inlet and outlet tubing, undiluted whole

blood samples from subjects were injected on to FN-

or LN-immobilized microchannels at 18.5 mL/min to

25.8 mL/min to fill channels, then 1.85 mL/min

(1 dyne/cm2) to 2.58 mL/min (1.4 dyne/cm2) until

15 mL of the sample was introduced. After the blood

flow, 180 mL of flow cytometry staining buffer (FCSB,

1X, with albumin 0.5%–1%, without fluoresceinated

antibodies) was run at 10 mL/min (1 dyne/cm2) for

18 minutes in the channels, to remove non-adhered

RBCs. All flow steps were conducted using New Era

NE-300 syringe pump system (Farmingdale, NY). An

inverted microscope (Olympus IX83) and microscopy

camera (EXi Blue EXI-BLU-R-F-M-14-C) was used

to obtain high-resolution images of whole channels.

All experiments were conducted at room temperature.

Image processing and quantification. Whole phase-

contrast images of microchannels with adhered RBCs

are obtained using Olympus (20x/0.45 ph2 and 40x/

0.75 ph3) long working distance objective lenses.

Images were then processed using Adobe Photoshop

software (San Jose, CA) for quantification of adhered

RBCs per unit area (32 mm2). Here, we categorized

RBCs based on morphology as deformable RBCs with

the characteristic biconcave shape and nondeformable

RBCs lacking biconcave morphology, based on earlier

work.66

Statistical analysis. The relationship between individ-

ual components of the CBC and serum tests and the

number of adhered RBCs was analyzed using K-means

clustering. The patients with HbSS were clustered into 2

groups, and the resultant groups were evaluated for dif-

ferences in adhesion. Single and multiple components

of the CBC and serum analyses were used to identify

the 2 subgroups. Once the subgroups were identified

by K-means clustering, the difference between the

numbers of adhered RBCs between these groups was

tested for statistical significance using the one-way

analysis of variance (ANOVA) test. The testing level

(alpha) was set as 0.05 (two-sided). The component or

components that lead to the significant subgroups in

terms of the differences between the numbers of

adhered RBCs were reported in this article. The K-

means clustering was performed using Matlab (The

MathWorks, Inc, Natick, Mass). Receiver-operating

curves were used to determine the SCD biochip’s

accuracy of differentiation between hemoglobin

phenotypes. The curves were generated using Matlab

(The MathWorks, Inc). In addition to the area under

the curve, sensitivity, specificity, positive and negative

likelihood ratios, and positive and negative predictive

values were calculated as follows: Sensitivity was

calculated as # true positives/(# true positives 1 #

Table II. Ability of SCD biochip in differentiating

between hemoglobin phenotypes based on RBC

adhesion to FN and LN microchannels

FN LN

SS-AA SC-AA SS-SC SS-AA SC-AA SS-SC

Threshold 9 9 30 16 16 170

Sensitivity 0.93 0.80 0.75 0.93 0.89 0.87

Specificity 1.00 1.00 0.70 1.00 1.00 0.78

PLR Inf Inf 2.50 Inf Inf 3.90

NLR 0.07 0.20 0.36 0.07 0.11 0.17

PPV 1.00 1.00 0.88 1.00 1.00 0.87

NPV 0.83 0.83 0.50 0.89 0.89 0.78

Accuracy 0.95 0.90 0.74 0.96 0.94 0.83

AUC 0.88 0.88 0.77 0.86 0.99 0.89

Abbreviations: AUC, Area under the receiver operating character-

istic curve; FN, fibronectin; LN, laminin; PLR, positive likelihood ratio;

PPV, positive predictive value; NLR, negative likelihood ratio; NPV,

negative predictive value.

Threshold unit is number of adhered RBCs per unit area.
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false negatives), specificity as # true negatives/(# true

negatives 1 # false positives). Positive likelihood

ratio was defined as sensitivity/(1-specificity).

Negative likelihood ratio was (1-sensitivity)/

specificity. Positive predictive value was # true

positives/(# true positives 1 # false positives), and

negative predictive value was # true negatives/(# true

negatives 1 # false negatives).

RESULTS

Probing abnormal RBC adhesion in a microfluidic

channel. The SCD biochip affords quantitative analysis

of RBCs with abnormal membrane and adhesive proper-

ties following attachment to endothelium-associated

proteins (Fig 1, A). The number of adhered RBCs is

quantified inside the FN- or LN-immobilized

microfluidic channels. We observed abnormal

adhesion of RBCs to the SCD biochip in blood

samples from subjects with SCD (Fig 1, B). In

contrast, adhesion of RBCs in blood samples from

normal subjects was negligible (not shown). Different

levels of RBC adhesion were observed in patients

with various clinical phenotypes (Fig 1, C and D).

RBC adhesion varies among hemoglobin

phenotypes. We analyzed the number of adhered

RBCs per unit area (32 mm2) in FN- and LN-

functionalized parallel microchannels (Fig S2) in

blood samples from subjects without SCD (HbAA), or

with compound heterozygous (HbSC or HbSb1-

thalassemia, HbSC/Sb1) or homozygous SCD

(HbSS), using high-resolution images from

microfluidic channels (Fig 2, A and B). RBC adhesion

to FN- or LN-coated microchannels was highest in

HbSS relative to HbSC/Sb1, and higher in HbSC/Sb1

relative to HbAA containing blood samples (Fig 2, C

and D). Close-up views of adhered RBCs in

functionalized microchannels are shown in Fig S3.

For selected thresholds of adhered RBC numbers, we

observed 0.93 true-positive rate and 0.00 false-positive

rate for differentiating between HbSS and HbAA

phenotypes (Fig 2, E and F). Area under the curve for

differentiating between HbSS and HbAA was .0.85

both for FN and LN (Table II). The ROC were

strongest in discriminating between AA and SS or SC,

compared with discrimination between SS and SC.

These results demonstrate the ability of the SCD

biochip to discriminate among hemoglobin

Fig 1. Sickle cell disease biochip (SCD biochip) probes red blood cell (RBC) adhesion in a closed system using

minuscule amounts of whole blood samples. (A) Flow and RBC cell adhesion are illustrated inside the SCD

biochip. Shown are varying levels of sickling and adherence to endothelium-associated protein-coated microchan-

nel surfaces. (Inset) SCD biochip consists of multiple parallel microchannels. Scale bar represents a length of

10 mm. (B) Number of adhered RBCs are quantified inside microfluidic channels that are functionalized with

FN or LN.We observed abnormal RBC adhesion in blood samples from SCD subjects. Adhered RBCs are marked

with red dots. (C and D) High-resolution phase-contrast images of adhered RBCs with heterogeneous sickle mor-

phologies inside the SCD biochip are shown. Different levels of RBC adhesion were observed in blood samples

from patients with various clinical phenotypes, such as high or low hemoglobin F (HbF) levels. FN, Fibronectin;

LN, laminin; RBC, red blood cell; SCD, sickle cell disease.
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phenotypes solely based on cellular adhesion. These

data support the role that abnormal cellular adhesion

plays in accounting for differences among SCD

phenotypes. High levels of HbF are associated with

improved clinical outcomes in SCD.86 Therefore, we

investigated RBC adhesion in HbSS blood samples

with low (,%8) and high (.%8) HbF levels (Fig 3),

based on estimates of what is physiologically

relevant.86 The mean number of adhered RBCs was

significantly higher in blood samples from HbSS

subjects with low HbF compared with those from

subjects with high HbF levels, in both FN- (Fig 3, A)

and LN-functionalized (Fig 3, B) microchannels.

These results demonstrate that SCD biochip is a

plausible in vitro adhesion assay for functional

phenotypes of SCD.

Clinical correlates for RBC adhesion to FN and LN. We

used K-means clustering analysis to identify subgroups

Fig 2. Adhesion of RBCs in FN- and LN-functionalized microchannels varies among SCD hemoglobin pheno-

types and are greatest in HbSS. Shown are high resolution images of microchannels in (A) FN or (B) LN. The

number of adhered RBCs was significantly higher in samples from subjects with HbSS . HbSC/Sb1
. HbAA

in both (C) FN and (D) LN immobilized microchannels. The horizontal lines between individual groups represent

a statistically significant difference based on a one-way ANOVA test (P , 0.05). Data point cross bars represent

the mean. ‘‘N’’ represents the number of subjects. (E and F) Receiver operating-characteristic (ROC) curves

display a true-positive rate (sensitivity) and a false-positive rate (1-specificity) for differentiation between SS-

AA, SC-AA, and SS-SC hemoglobin phenotypes based on adhesion of RBCs to (E) FN and (F) LN. Defined

thresholds for adhered RBC numbers on the ROC are as shown (> 5 9 (SS-AA), , 5 9 (SC-AA), and

B5 30 (SS-SC) for FN;>5 16 (SS-AA),,5 16 (SC-AA), andB5 170 (SS-SC) for LN). ANOVA, Analysis

of variance; FN, fibronectin; LN, laminin; RBC, red blood cell; SCD, sickle cell disease.
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of HbSS patients based on individual components of

standard blood tests. We analyzed HbSS RBC adhesion

to FN microchannels in blood samples from patients

with dichotomized laboratory values, including LDH

levels and percent HbS. The mean adherence was

directly associated with LDH levels (FN, Fig 4, A). K-

means clustering analyses were then applied to

determine univariate models with greater significance

in correlation with RBC adhesion to FN. Levels of

HbS varied due to recent transfusions (HbA $10%) or

due to increased levels of HbF. High levels of HbS

were associated with increased LDH levels (group 1

relative to group 2, Fig 4, B). We observed that

patients with high HbF tended to have low serum

LDH levels (14/16 patients with .%8 HbF have

,500 U/L LDH; Fig S4). Adherence to FN was

significantly greater in blood samples with higher

LDH and higher HbS levels (group 1 compared with

group 2, Fig 4, C). Most transfused subjects (7/9)

were in the lower LDH subgroup (LDH ,500 U/L,

Fig S5). In addition, subjects with a lower platelet

count (,320 109/L) consistently had fewer than 400

adherent RBCs per unit area of FN (Fig S6). These

methods were also applied to determine correlations

with RBC adhesion to LN (Fig 5). Adherence to LN

was significantly greater in HbSS blood samples with

higher LDH (Fig 5, A) or higher reticulocyte counts

(Fig 5, B). High levels of LDH were associated with

elevated reticulocyte counts (group 1 relative to group 2,

Fig 5, C). In univariate models, we observed

significantly greater adhesion to LN in HbSS blood

samples with higher LDH and higher reticulocyte

levels (group 1 compared with group 2, Fig 5, D),

independent of HbS (Fig S5, C and D). Moreover, we

analyzed correlation between RBC adhesion to FN

and LN, and reticulocyte counts for SCD subjects (Fig

S7). We found a statistically significant correlation

between reticulocyte counts and RBC adhesion to LN

(Pearson product-moment correlation coefficient,

PCC 5 0.53, P 5 0.007) and to FN (PCC 5 0.46, P

5 0.035), and this effect was increased in the absence

of transfused subjects for both LN (PCC 5 0.72,

P , 0.0001) and FN (PCC 5 0.66, P 5 0.018).

Furthermore, we analyzed RBC counts of the patient

blood samples used in our study and found an average

number of 2.65 6 0.66 3 109 RBCs/mL (mean 6

standard deviation, Fig S8, A), where 21 of 31 blood

samples had RBC counts within 1.9–2.9 3 109 RBCs/

mL. There was no statistically significant correlation

between RBC counts of the blood samples and

number of adhered RBCs to either FN or LN (Fig S8,

B and C).

These results show clinical associations between

RBC adhesion to FN or LN with LDH, platelet counts,

or reticulocyte counts. Nonetheless, heterogeneity was

present in all analyses, for example, low adhesion in

some patients with a high LDH or elevated reticulocyte

count (Figs 4 and 5); this was also seen in a subset of

chronically transfused patients; the converse was less

ambiguous, for example, low adhesion was present in

most patients with a low LDH (Fig 4).

Identifying subpopulations of adherent RBCs. The

morphology and number of adherent RBCs in HbSS

blood samples were examined after controlled detach-

ment of cells at step-wise increased flow shear stresses

of 1, 4, and 50 dyne/cm2 (Fig 6, A–C). Based on

Fig 3. Adhesion of RBCs is greater in HbSS subjects with a low (,%8) HbF, compared with high (.%8) HbF.

(A and B) RBC adhesion was quantified in blood samples of HbSS patients with high and low HbF levels, from

temporally nearest clinical measurement (not uniformly contemporaneous). Number of adhered RBCs was signif-

icantly higher in blood samples from subjects with low HbF levels compared with blood samples from subjects

with high HbF levels in both (A) FN and (B) LN immobilized microchannels. The horizontal lines between indi-

vidual groups represent a statistically significant difference based on a one-way ANOVA test (P , 0.05). Data

point cross bars represent the mean. ‘‘N’’ represents the number of subjects. ANOVA, Analysis of variance;

FN, fibronectin; HbF, fetal hemoglobin; LN, laminin; RBC, red blood cell.

Translational Research

80 Alapan et al July 2016

http://dx.doi.org/10.1016/j.trsl.2016.03.008


morphologic characterization, adhered RBCs were

categorized as deformable (Fig 6, D) or

nondeformable (Fig 6, E), based on our earlier

work.66 The percent of deformable and

nondeformable RBCs, relative to total adhered RBCs

at 1 dyne/cm2 shear stress, was calculated in each

experiment, and the mean and standard error were

determined (Fig 6, F). These analyses were repeated

at higher shear stresses of 4 and 50 dyne/cm2. The

total number of adhered RBCs decreased with higher

shear stresses, whereas the proportion of

nondeformable RBCs increased in these same

experiments (Fig 6, F). The percent of nondeformable

RBCs, determined at 1 dyne/cm2, correlated

significantly with serum LDH levels in test subjects

(Fig 6, G; PCC 5 0.74; P , 0.0001). These results

indicate a morphologic heterogeneity in adhered

RBCs and suggest an association between LDH (an

indicator of hemolysis) and adherent nondeformable

RBCs. A detailed description of RBC adhesion at

differing flow rates is shown in Fig S9, with close-up

views of adhesion to FN and LN, respectively, in Figs

S10 and S11.

Longitudinal analysis of RBC adhesion. We conducted

longitudinal analyses on a limited number of individ-

ual subjects, performed $1 month apart using the

same biomolecule, FN or LN (Fig S12). Stable SCD

RBC adhesion to FN was seen in 2 patients being

treated for SCD, including unique patient number

(UPN) 21 (Fig S12, A), examined when HbA levels

were stable on transfusions, and UPN 118, examined

when HbF levels were stably elevated on

hydroxyurea (Fig S12, A). Noted, but of unknown

significance, since in 2 patients, is the overall lower

adhesion seen in the subject on hydroxyurea, given

the pancellular effects of hydroxyurea compared with

transfusions. Adhesion to FN dropped after each

transfusion in UPN 67, monitored over 6 months,

Fig 4. RBC adhesion to FN is associated with lactate dehydrogenase (LDH) and HbS percentage. (A) Number of

adhered RBCs in FN microchannels was significantly higher in blood samples with high LDH (.500 U/L). Seven

of 9 samples are from subjects who had recently been transfused (Fig S4) and who had low LDH and low adhesion.

(B) In blood samples with higher LDH and higher HbS (group 1), determined by k-means clustering analysis,

(C) adherence to FN was significantly greater compared with lower LDH and lower HbS (group 2). Samples

from recently transfused subjects are shown with triangle markers. The horizontal lines between individual groups

represent a statistically significant difference based on a one-way ANOVA test (P , 0.05). Data point cross bars

represent the mean. ‘‘N’’ represents the number of subjects. ANOVA, Analysis of variance; FN, fibronectin; RBC,

red blood cell.
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after 2 episodes of transfusion (Fig S12, B). Adhesion

to LN was stable in UPN 20, being managed with

supportive care, and in UPN 35, stably on

hydroxyurea (Fig S12, C). Adhesion to LN in a

single patient dropped by .80% from baseline after

initiation of hydroxyurea, as HbF rose from 1% to

20% (Fig S12, D).

DISCUSSION

The sickle hemoglobin mutation afflicts many mil-

lions of people worldwide and is associated with consid-

erable morbidity and mortality.86 Even though the

molecular underpinnings of SCD were recognized

more than 60 years ago,87 there is no clear-cut molecu-

lar or biophysical markers through which to evaluate

disease severity in the clinic. Biophysical phenomena,

such as cell adhesion and deformability, reflect the

multi-scale dimensions of SCD including molecular al-

terations, perturbed regulatory pathways, and cellular

abnormalities. These are plausible biomarkers of dis-

ease activity and progression. RBC adhesion has been

shown to be a critical biophysical factor involved in

vaso-occlusion52,53 and to correlate with disease

severity.10-12 However, studies of RBC adhesion in

SCD have been primarily proof-of-concept rather than

clinically applicable, due to requirements for compli-

cated custom-designed systems, highly trained

personnel, specially obtained blood samples, and exten-

sive sample manipulation.52,59-61 These significant

technological barriers have hindered the widespread

evaluation of RBC adhesion clinically or as a research

tool. This has restricted our ability to integrate

complex RBC adhesion phenomena into our

understanding of SCD.

Here, we introduce a novel microfluidic biochip tech-

nology, SCD biochip, which provides an easy-to-use

platform for probing RBC adhesion quantitatively in

clinically available blood samples. The SCD biochip al-

lows rapid, fully enclosed, and preprocessing-free anal-

ysis of blood samples, which affords simultaneous

Fig 5. RBC adhesion to LN is associated with high LDH and high absolute reticulocyte counts. (A andB) RBCs in

blood samples with (A) high LDH (.500 U/L) and (B) higher reticulocyte counts (.320 109/L) showed a signif-

icantly higher adherence to LN-immobilized microchannels compared with RBCs from samples with low LDH

(,500 U/L) and low reticulocyte counts (,320 109/L), respectively. (C) Blood samples with higher LDH and

higher reticulocyte counts (group 1), determined by k-means clustering analysis, (D) showed significantly greater

adhesion to LN compared with blood samples with lower LDH and lower reticulocyte counts (group 2). The hor-

izontal lines between individual groups represent a statistically significant difference based on a one-way ANOVA

test (P, 0.05). Data point cross bars represent the mean. ‘‘N’’ represents the number of subjects. ANOVA, Anal-

ysis of variance; LDH, lactate dehydrogenase; LN, laminin; RBC, red blood cell.
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interrogation of both cellular behavior and plasma char-

acteristics.66 Cumulative membrane damage and aber-

rant activation of multiple adhesion receptors are

acquired over the life of a HbS-containing RBC and

cause abnormal adhesion. This integrates pathophysio-

logical processes, that are both intracellular (eg, hemo-

globin concentration, composition,88-90 and

polymerization55,91), and extracellular/plasma (eg,

cytokines92,93 or beta adrenergic stimulation94,95). The

SCD biochip measures RBC adhesion quantitatively

Fig 6. Heterogeneity in adhered RBCs in FN-functionalized microchannels is associated with serum LDH levels.

(A–C) Number and morphology of adhered RBCs were analyzed in HbSS blood samples at step-wise increased

flow shear stresses; (A) 1 dyne/cm2, (B) 4 dyne/cm2, and (C) 50 dyne/cm2. (D) Deformable and (E) nondeformable

RBCs were determined morphologically. Scale bars represent a length of 5 mm. (F) Nondeformable RBCs (% of

total adheredRBCs) at 1, 4, and 50 dyne/cm2 flow shear stress were calculated (columns). Total number of RBCs at

each flow velocity is shown. The horizontal lines between individual groups represent a statistically significant

difference based on a one-way ANOVA test (P , 0.05). Error bars represent the standard error of the mean.

‘‘N’’ represents the number of subjects. (G) Shown is adhered nondeformable RBCs (% of total) and serum

LDH (U/L) at 1 dyne/cm2 (Pearson correlation coefficient of 0.74, P , 0.0001, N 5 21). ANOVA, Analysis of

variance; FN, fibronectin; LDH, lactate dehydrogenase; RBC, red blood cell.
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in patients’ whole blood samples without any

preprocessing.

Blood flow in microcirculation is dependent on the

intrinsic RBC biomechanical properties, namely de-

formability96,97 and adhesiveness.11,35,94 RBC

deformability and adhesion are compromised in many

disease states, resulting in blockages of blood flow in

microcapillary networks. Abnormal RBC adhesion to

endothelium has been implicated in other multi-

system diseases, such as b-thalassemia, diabetes melli-

tus, hereditary spherocytosis, polycythemia vera, and

malaria.13,98,99 The precise contribution of different

cell types to initiation and propagation of the vaso-

occlusive crisis, which is pathophysiologically central

to SCD, is unknown. We observed adhesion of different

RBC subpopulations to FN and LN, reminiscent of RBC

subpopulations defined in the literature for vaso-occlu-

sion.100 Furthermore, although deformable sickle

RBCs adhere in higher numbers (especially to LN),

nondeformable RBCs display greater adhesion strength,

suggesting a critical contribution by both populations to

vaso-occlusion.

RBC adhesion in SCD is governed by the complex in-

teractions among RBC receptors, endothelial cell li-

gands, and plasma factors.77,101-103 In this study, we

functionalized microfluidic channels with FN or LN,

which are known to be critical in RBC adhesion to

endothelium.56 FN is an adhesive glycoprotein that cir-

culates in plasma and is present on the endothelial cell

membrane.78,102 FN is reported to interact with

multiple RBC adhesion molecules, including CD44,

CD147 (basigin/neurothelin), and a4b1 integrin

(VLA-4),102 and with other plasma proteins, such as

thrombospondin.104,105 Furthermore, a primary role

was suggested for FN in RBC adhesion during

vascular injury or inflammation.78,106 In our study, we

used FN as an adhesion molecule based on multiple

earlier in vitro60,77,101 and ex vivo animal

experiments,106,107 suggesting a critical role of FN in

mediating RBC adhesion.

LN is a subendothelial matrix protein that interacts

with RBC BCAM/Lu.56,108-110 This interaction has

been attributed primarily to interactions with the a5

chain of LN subtypes 10/11,102,111-113 although other

investigators have described RBC- or BCAM/Lu-

mediated interactions to human placental or non-10/11

LN subtypes,59,108,111,114 including LN 1.114 Human

placental LN contains a mixture of LN isoforms,

including LN 1, 2, 3, 4, and 10, and generally contami-

nated with FN, entactin, and collagen type IV.111,115-117

Here, we observed adhesion of sickle RBCs to subtype

LN 1 that is associated with clinical phenotype

(increased LDH, reticulocytosis). Augmentation of

sickle RBC binding in the presence of autologous

plasma has been suggested for other RBC

interactions,103,118-120 and this effect may be at play in

our system as well.

We used patient blood samples collected in Vacu-

tainer tubes with EDTA. EDTA is the most widely

used anticoagulant for blood collection.121 Thus, we

tested our SCD biochip technology with a standard

blood collection method that is applicable to most clin-

ical settings. The blood used in our studies, surplus from

clinically obtained complete blood cell analyses, is

easily attainable, due to the frequent use of this test in

the clinical care of patients with SCD. To date, EDTA

anti-coagulated blood has not appreciably affected ana-

lyses of RBC adhesion to FN or LN. In the future, we

plan to use alternate anti-coagulants (eg, sodium citrate

or corn trypsin inhibitor) with specially drawn blood

samples for detailed pathophysiological analyses of

RBC and WBC adhesion.

We showed significant associations between RBC

adhesion and individual features of red cell phenotype,

including hemoglobin content (HbSS, HbSC, HbAA,

%HbF, %HbA), reticulocyte count, LDH; and RBC

adhesion to FN and LN. These factors have known clin-

ical relevance.56,122-124 However, the relative

contribution made by each RBC characteristic is not

yet known. Furthermore, a range of hemoglobin

phenotypes can be distinguished through the use of the

SCD biochip. Greater adhesion of RBCs to endothelial

cells or endothelium-associated proteins in HbSS blood

samples compared with HbAA blood samples has been

shown abundantly in the literature by a number of

eminent researchers.59,60,77,125-128 Moreover, RBC

adhesion to FN and LN in patients undergoing

hydroxyurea treatment was shown to decrease with

increasing HbF levels.110,126,129 Our results also

showed greater adhesion of RBCs in HbSS blood

samples compared with other hemoglobin phenotypes,

and also in HbSS blood samples with lower HbF

levels, which is in agreement with the previous

studies.59,60,77,110,125-127,129 However, to the best of our

knowledge, there is no study reporting a side-by-side

comparison of RBC adhesion from HbAA, HbSC, and

HbSS patient blood samples using a standard adhesion

assay and multiple adhesive interactions, as we have

shown here. It is likely that useful insights about hemo-

globin phenotype and disease severity may be gleaned

from the SCD biochip, if applied widely.

Hemolysis has been identified as a central pathophys-

iological trigger in SCD, due to the deleterious impact of

free heme on endothelial health and inflamma-

tion.123,130-135 The relationship between RBC

biophysical properties and hemolysis in SCD,

including RBC adhesion and deformability, is not fully

understood. Increased rigidity and cyclic sickling of
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RBCs, resulting in cell membrane damage, has been

suggested as the primary factor in intravascular

hemolysis,55,134,136,137 and it is possible that red cell

adhesion may associate more strongly with hemolysis

than with pain. Hemoglobin and arginase released

from RBCs during hemolysis result in decreased nitric

oxide bioactivity, affecting vascular tone and

endothelial activation.134,138 Markers of hemolysis in

blood, such as LDH, have been associated with

elevated soluble adhesion molecules in plasma,

including Vascular Cell Adhesion Molecule 1

(VCAM-1), Intercellular Adhesion Molecule 1

(ICAM-1), P-selectin, E-selectin, and Von Willebrand

factor.123,138,139 Furthermore, significant correlations

between percentage of dense and nondeformable

RBCs and hemolysis markers, including bilirubin,

aspartate transaminase, and LDH, have been

shown.13,140 Although an association between

hemolysis and elevated plasma adhesion molecules has

been shown before,123,138,139 there is no report, to the

best of our knowledge, that links hemolysis to

adhesion and deformability of RBCs simultaneously.

In this work, we identified a unique adherent

nondeformable RBC population, significantly

correlated with serum LDH levels, which reflects a

functional outcome in terms of both deformability and

adhesion of RBCs and is a pathophysiologically

plausible source for active hemolysis in SCD. Of note,

no single clinical characteristic (high LDH, increased

reticulocytes, or low HbF) definitively identified high

and low adhesion subgroups; we are working to

develop better predictive models in the future, using

multivariate analyses and larger patient numbers. Pain

scores vary significantly from patient to patient at

baseline.141,142 Subjectivity in pain perception and

variations in pain scores in SCD patients might

contribute to the fact that we did not observe

associations between pain scores and ourmeasurements.

Understanding the pathophysiology of abnormal cell

adhesion has allowed development of new pharmaceu-

tical approaches, such as agents targeting platelet adhe-

sion to Von Willebrand factor in atherosclerosis,143,144

and blocking therapies inhibiting malaria-infected

RBC adhesion to endothelial cells.145 Quantitative

assessment of cellular adhesion is a promising indicator

of disease activity due to its integration of multiple

scales of interrogation, from molecular to cellular inter-

actions. This concept has been used in cancer146 and

atherosclerosis.74,147 In parallel, microfluidic

technologies developed recently have paved the way

for widespread utilization of cellular adhesion as a

clinical marker due to their ease of use, short analysis

time, and enhanced capacity to mimic physiological

conditions.65-67 Hydroxyurea, the only approved

pharmaceutical treatment for SCD, increases HbF

content in the RBCs in some, but not all, treated

subjects.124 Hydroxyurea may decrease RBC adhesion

through both HbF-inducing and non–HbF-inducing

mechanisms.92,113,126 One quarter of all samples with

high HbF (.8%), used in our studies, were obtained

from patients with hereditary persistence of HbF.

Furthermore, our description of an association

between lesser RBC adhesion and higher HbF% is

congruent with the observation that increased HbF

content interferes with polymerization of sickle

hemoglobin molecules and mitigates the effects of the

disease. The contribution to this effect that is

attributable to non–HbF-related effects of hydroxyurea

cannot be discerned in our current analyses.

Recently, extraordinary efforts have been made to

transform current knowledge about abnormal cellular

adhesion in SCD into clinical benefit for patients using

novel targeted agents. VLA-4 blocking antibodies have

been proposed in SCD.148 Beta-adrenergic receptor

blockade, which targets epinephrine-mediated red cell

adhesion,95,149-152 has been used in patients, using an

U.S. Food and Drug Administration (FDA) approved

medication (propranolol).153 Red cell adhesion to an

activated endothelium has specifically been targeted

with small molecules (aVb3),
154 low-molecular-weight

heparin (P-Selectin),155,156 and an oral agent in phase

I/II studies in humans (P-selectin).125,157,158 Abnormal

interactions between leukocytes and activated

endothelium and endothelial selectins have been

targeted in vitro and in vivo with antibodies and small

molecules159-162 and are now the focus of phase II and

III clinical studies in SCD. Although both P-selectin

and E-selectin are important for adhesion of

leukocytes to the endothelium, endothelial E-selectin

appears crucial for generating secondary activating

signals in the leukocyte.163 The novel synthetic pan-

selectin inhibitor, GMI-1070, with maximal activity

against E-selectin has made it possible to test this para-

digm in vivo in crisis.162,164 Furthermore, a clinical

trial using intravenous immunoglobulin infusions to

block FcgRIII receptor mediation of secondary activity

on neutrophils in children with SCD in crisis is in

process (ClinicalTrials.gov identifier:

NCT01757418).165 A functional in-vitro adhesion test,

such as the SCD biochip, could be a useful tool for

measuring patients’ response to treatment. Moreover,

the SCD biochip could be adopted as an in-vitro model

inwhich to test therapeutics that target cellular adhesion.

Key clinical and experimental studies, using flow

chambers or ex vivo rat mesocecum,52,59-61 have

shown that sickle RBC adhesion and deformability,

WBC adhesion and activation,166 and aberrant endothe-

lial activation all plausibly contribute to the
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pathogenesis of vaso-occlusive crisis52,53,125,155 and

may correlate with disease severity.10-12 Besides FN

and LN, sickle RBC adhesion to other endothelium

receptors, such as p-selectin, avb3 integrin, and

VCAM-1, has been presented in the literature.53,125,151

Monocytes167-170 and neutrophils171-173 are often

increased in number, abnormally activated, and

associated with adverse outcomes in SCD.130,170,174-176

Quantitative abnormalities in lymphocytes and natural

killer cells have been described154,177 and are the focus

of recent therapeutic interventions.160,178 Perspectives

on SCD pathophysiology must, in addition to RBC

abnormalities, also integrate endothelial, WBC, and

platelet activation and adhesion, inflammation, and

thrombophilia.167,172,179-189 Our work is not meant to

be an exhaustive survey of all potential abnormal

cellular adhesion events in SCD. The new SCD

biochip platform, introduced here, has the potential to

informatively interrogate leukocyte adhesion,

leukocyte activation, and RBC adhesion to other

endothelial surface proteins, which we will incorporate

in future studies.

Despite recent advances in identifying and targeting

cellular adhesion in SCD, knowledge about biophysical

properties of abnormal cellular adhesion has not been in-

tegrated into routine clinical care or trial design, due to a

requirement for complicated custom-designed systems,

highly trained personnel, specially obtained blood sam-

ples, and extensive sample manipulation. SCD biochip

will provide amore precise characterization of abnormal

adhesive events in a given individual and may allow a

more accurate assessment of response to therapy, espe-

cially emerging adhesive therapies, overall. Our goal is

to make the SCD biochip as feasible, and clinically

meaningful in SCD as glucose testing is in diabetes.

The SCD biochip is an in vitro assay for quantitative

assessment of RBC adhesion, which has potential for

on-site monitoring of disease activity and vaso-

occlusion. The SCD biochip is feasibly applicable to a

range of ‘‘real-world’’ clinical scenarios, having been

tested using surplus blood obtained from a busy urban

SCD clinic, at baseline and during clinical flux

(including promising initial studies after treatment and

in association with long-term complications). Our

expectation is that longitudinal interrogations of

cellular adhesion with the SCD biochip will be informa-

tive about physiological changes in patients over time

during the clinical course of SCD.
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Appendix

Fig S1. Consort-type diagram showing inclusion and exclusion criteria for subject recruitment.

Fig S2. Development and fabrication of SCD biochip. (A) Adhesion receptors from the immunoglobulin super-

family (IgSF) BCAM/LU and integrin family (a4b1) are targeted for adhesion to endothelial and subendothelial

associated proteins, FN and LN. (B) FN and LN are covalently tethered to the glass slide through a cross linker

(GMBS) and a self-assembled silane monolayer coating (APTES). (C) Assembly of the SCD biochip, composed

of a polymethyl methacrylate (PMMA) cover, with micromachined inlets and outlets, a double-sided adhesive

(DSA) layer, which defines the channel shape and height, and a glass slide base. (D) SCD biochip placed on a

microscope stage for live cell imaging.
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Fig S3. Close-up view of FN- and LN-adhered HbSS RBCs. (A and B) RBC adhesion was quantified using high

resolution images of whole microchannels. Typical morphologies of adhered RBCs from HbSS blood samples in

(A) FN- and (B) LN-functionalized microchannels are shown in subsequent insets. Scale bar represents 50 and

5 mm length, respectively.

Fig S4. Serum LDH levels of SCD subjects with respect to corre-

sponding percent (%) HbF.
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Fig S5. Adhesion of RBCs in transfused and nontransfused blood samples with high and low LDH levels, platelet

counts, and reticulocyte counts. (A and B) RBCs in transfused blood samples with either high or low LDH and

platelet counts (Plts) displayed low adherence to FN. (C and D) RBC adherence to LN was comparable in trans-

fused and nontransfused blood samples with either high or low LDH and low reticulocyte counts.

Fig S6. RBC adhesoneion to FN is associated with platelet counts in

HbSS patients. Number of adhered RBCs in FN microchannels was

significantly higher in blood samples with high platelet counts (Plts,

.320 109/L). The horizontal lines between individual groups repre-

sent a statistically significant difference based on one-way ANOVA

test (P , 0.05). Data point cross bars represent the mean. ‘‘N’’ repre-

sents the number of subjects.

Translational Research

91.e3 Alapan et al July 2016

http://dx.doi.org/10.1016/j.trsl.2016.03.008


Fig S7. Correlation of RBC adhesion to FN and LN, and reticulocyte counts in (A and C), all studied SCD sub-

jects, and in (B and D) nontransfused SCD subjects. Correlation between number of adhered RBCs and reticulo-

cyte counts increased when transfused subjects were excluded.

Fig S8. RBC counts in analyzed SCD patient whole blood samples and correlation with RBC adhesion to FN and

LN. (A) RBC counts showed an average of 2.65 6 0.66 3 109 RBCs/mL (mean 6 SD), where 21 of 31 blood

samples had RBC counts within 1.9–2.93 109 RBCs/mL. (B and C) There was no statistically significant corre-

lation between RBC counts of the blood samples and number of adhered RBCs to FN and LN.
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Fig S9. RBC adhesion to FN- and LN-functionalized microchannels in HbSS blood samples at different flow

velocities. Microchannel images show RBC adhesion in (A–C) FN- and (D–F) LN-immobilized microchannels

at (A andD) 1 dyne/cm2, (B and E) 4 dyne/cm2, and (C and F) 50 dyne/cm2 flow shear stresses. (G andH) Shown

is quantitation of adhered RBCs, at 50 dyne/cm2 shear stress compared with 1 dyne/cm2 and 4 dyne/cm2 shear

stress to FN- (G) and LN-immobilized (H) microchannels. The horizontal lines between individual groups

represent a statistically significant difference based on a one-way ANOVA test (P , 0.05). Data point cross

bars represent the mean. ‘‘N’’ represents the number of subjects.
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Fig S10. Close-up view of RBCs adhered to FN-immobilized microchannels in HbSS blood samples under

precisely controlled flow velocities. (A–C) Microchannel images showed RBC adhesion in FN-immobilized

microchannels and typical cell morphologies at (A) 1 dyne/cm2, (B) 4 dyne/cm2, and (C) 50 dyne/cm2 flow shear

stresses. RBCs with characteristic biconcave shape along with RBCs lacking biconcavemorphologywere noted in

FN microchannels. Scale bar represents 50 and 5 mm length, respectively.
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Fig S11. Close-up view of RBCs adhered to LN-immobilized microchannels in HbSS blood samples under pre-

cisely controlled flow velocities. (A–C) Microchannel images showed RBC adhesion in FN-immobilized micro-

channels and typical cell morphologies at (A) 1, (B) 4, and (C) 50 dyne/cm2 flow shear stresses. Only RBCs with

characteristic biconcave shape were observed in LN microchannels. Scale bar represents 50 and 5 mm length,

respectively.
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Fig S12. Cellular adhesion reflects clinical status in SCD. Shown are longitudinal analyses of adhesion to (A) FN.

In UPN 118, stably transfused at 38%–42%HbA, and analyzed 1 month apart; in UPN 21, on hydroxyurea with a

stable HbF (18%–19%), analyzed 4 months apart. (B) FN. In UPN 67, after transfusions, analyzed at 0, 1, 5, and

6 months. (C) LN. In UPN 20, managed with supportive care only and analyzed 2 months apart, and in UPN 35,

managed with hydroxyurea (HbF, 22%–25%), analyzed 9 months apart. (D) LN. In UPN 19, over 4 months, after

initiation of hydroxyurea therapy. (UPN: unique patient number).
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